Priority Standards

Math Priority Standards – Grade 8

Below is a table of the priority standards.

Learning Services

Priority Standards	Description
8.NS.2	Use rational approximations of irrational numbers to compare the size of
	irrational numbers, locate them approximately on a number line diagram, and
	estimate the value of expressions (e.g. π^2). For example, for the approximation
	of 68, show that $\sqrt{68}$ is between 8 and 9 and closer to 8KSDE Flipbooks*
8.SP.1	Construct and interpret scatter plots for bivariate measurement data to
	investigate patterns of association between two quantities. Describe patterns
	such as clustering, outliers, positive or negative association, linear association,
	and nonlinear association <u>KSDE Flipbooks</u> *
8.EE.3	Read and write numbers expressed in scientific notation, including problems
	where both decimal and scientific notation are used. Use scientific notation and
	choose units of appropriate size for measurements of very large or very small
	quantities (e.g. use millimeters per year for seafloor spreading). Interpret
	scientific notation that has been generated by technology <u>KSDE Flipbooks</u> *
8.EE.5	Use similar triangles to explain why the slope (m) is the same between any two
	distinct points on a non-vertical line in the coordinate plane and extend to $y = y$
	include the use of the slope formula ($m = \frac{y_2 - y_1}{x_2 - x_1}$ when given two coordinate
	points (x_1, y_1) and (x_2, y_2)). Generate the equation $y = mx$ for a line through the
	origin (proportional) and the equation $y = mx + b$ for a line with slope m
	intercepting the vertical axis at y-intercept b (not proportional when $b \neq 0$)
	KSDE Flipbooks*
8.EE.7	Fluently (efficiently, accurately, and flexibly) solve one-step, two-step, and
	multi-step linear equations and inequalities in one variable, including situations
	with the same variable appearing on both sides of the equal sign.
	• 8.EE.7a. Give examples of linear equations in one variable with one
	solution $(x = a)$, infinitely many solutions $(a = a)$, or no solutions $(a = a)$
	b). Show which of these possibilities is the case by successively
	transforming the given equation into simpler forms, until an equivalent
	equation of the form $x = a$, $a = a$, or $a = b$ results (where a and b are
	different numbers).
	8.EE.7b. Solve linear equations and inequalities with rational number
	coefficients, including equations/inequalities whose solutions require
	expanding and/or factoring expressions using the distributive property
	and collecting like termsKSDE Flipbooks*

Priority Standards	Description
8.F.2	Compare properties of two linear functions represented in a variety of ways
	(algebraically, graphically, numerically in tables, or by verbal descriptions). For
	example, given a linear function represented by a table of values and a linear
	function represented by an algebraic expression, determine which function has
	the greater rate of change, the greater y-intercept, or the point of intersection.
0.5.2	- <u>KSDE FIIDDOORS</u> "
8.F.3	Interpret the equation $y = mx + b$ as defining a linear function, whose graph is
	a straight line; give examples of functions that are not linear. For example, the function $A = a^2$ giving the group of a group of a group of the ride length is not
	Junction $A = s^2$ giving the dred of a square as a function of its side length is not linear because its graph contains the points (1, 1), (2, 4) and (2, 0), which are not
	an a straight line KSDE Eliphooks*
	Construct a function to model a linear relationship between two quantities
0.Г.4	Construct a function to model a linear relationship between two quantities.
	description of a relationship or from two (x, y) values, including reading these
	from a table or from a graph. Interpret the rate of change and initial value of a
	linear function in terms of the situation it models, and in terms of its graph or a
	table of values - KSDF Eliphooks*
8.G.5	Use informal arguments to establish facts about the angle sum and exterior
	angle of triangles, about the angles created when parallel lines are cut by a
	transversal, and the angle-angle criterion for similarity of triangles. For
	example, arrange three copies of the same triangle so that the sum of the three
	angles appears to form a line, and give an argument in terms of transversals
	why this is so <u>KSDE Flipbooks</u> *
8.G.8	Apply the Pythagorean Theorem to determine unknown side lengths in right
	triangles in real-world and mathematical problems in two and three
	dimensions. For example: Finding the slant height of pyramids and cones.
	- <u>KSDE Flipbooks</u> *
8.G.12	Solve real-world and mathematical problems involving arc length, area of two-
	dimensional shapes including sectors, volume and surface area of three-
	dimensional objects including pyramids, cones and spheres <u>KSDE Flipbooks</u> *

*Kansas Department of Education has created 'Flipbooks' for current standards that detail each standard, including examples and resources to support in understanding the depth of the standard.